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Internal fracture in an elastomer containing a 
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Rubber blocks were prepared with thin glass rods in their centres, firmly bonded to the 
surrounding rubber. A tensile stress applied to the ends of a block in the direction of the rod 
axis induced the sudden formation of voids in the rubber near the flat ends of the rod. 
Approximate values of the local stresses have been calculated by FEM, assuming linear elastic 
behaviour. Voids were found to form when and where the local dilatant stress, - P  (negative 
hydrostatic pressure), exceeded the magnitude of Young's modulus, E, for the rubber. A pre- 
cursor void in a highly elastic solid would expand indefinitely under these circumstances, so 
that fracture seems to be the result of an elastic instability. The applied stress at which voids 
appear was of the same order as E for short rods, or for a butt joint between a rod and a 
rubber cylinder of the same diameter, but it became extremely small when the rod was thin 
compared to the block in which it was embedded, and relatively long. Under these circum- 
stances the local dilatant stress is calculated to be a large multiple of the applied tensile stress. 

1, Introduct ion  
Composites, consisting of high-modulus fibres or 
particles embedded in a softer matrix, are an import- 
ant class of structural materials. However, the edges 
and surfaces of the inclusions can act as sites of 
dangerous stress concentrations and cause internal 
failure of the softer matrix material. Most previous 
work has dealt with the problem of  stress transfer 
between the inclusion and the matrix [1-6]; few studies 
of  matrix fracture induced by the inclusion have been 
reported [7-9]. 

One particular mode of  fracture is considered here. 
Termed cavitation, it consists of the sudden appear- 
ance of a void within an elastomeric solid when the 
triaxial tension, - P  (negative hydrostatic pressure), 
at that point reaches a critical value, denoted Pc. This 
process is regarded as the unstable elastic expansion of 
a pre-existing void, too small to be readily detected, 
followed by its growth as a running crack when the 
maximum elongation of the material has been exceeded 
[7]. Growth of  the void stops when it becomes large 
enough to alleviate the triaxial tension which gave rise 
to it. 

In a previous study, cavitation was observed in an 
elastomeric matrix containing a rigid spherical inclu- 
sion [9]. Voids formed near the surface of  the inclusion 
in the direction of  the applied tension when the mag- 
nitude of the far-field tensile stress reached a critical 
value, to. For  large inclusions, having a diameter, d, of 
5 mm or more, the critical applied stress was found to 
be about El2, where E is Young's modulus of the 
matrix elastomer. This corresponds to a triaxial ten- 
sion at the poles of the inclusion of approximately E, 
in good agreement with the theoretical value for cavi- 
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tation by the unbounded expansion of a precursor 
void in an incompressible highly elastic solid, i.e. 5E/6 
[7]. 

Larger stresses were found to be necessary to cause 
cavitation in the vicinity of  smaller inclusions, 
although it is not at all clear why this is so. An empiri- 
cal relation was found to hold [9]: 

tc = (5E/12) + k/d '/2 

where k is an experimentally determined constant, 25 
to 40 kPa m ~n. 

We turn now to the phenomenon of  cavitation near 
the flat end surfaces of a rigid rod, embedded in an 
elastomeric matrix which is subjected at infinity to a 
simple tensile stress in the direction of  the rod axis. 
Two special cases are emphasized: the short rod, corre- 
sponding to a thin disc in the interior of the elasto- 
meric material; and a rod that is long in comparison 
with the lateral dimensions of the sample containing 
it, so that it is effectively semi-infinite in length. 

The general nature of the observed failures is descri- 
bed first and then some numerical values of the failure 
stresses are given and compared with theoretical esti- 
mates of cavitation stresses. In order to make these 
comparisons, values of the triaxial tension set up near 
the end surfaces of  the rods have been computed using 
a finite-element method, assuming that the matrix 
material is linearly elastic and incompressible and that 
the inclusion is rigid and perfectly bonded to the 
matrix. 

2. Experimental procedures 
2.1. Preparation of test-pieces 
Inclusions were prepared by cutting and polishing 
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Figure 1 Rubber block, containing a glass rod at its centre, sub- 

jected to an applied tensile stress. 

soda-lime glass rods of varied length and having diam- 
eters in the range 0.6 to 2.2ram. Care was taken to 
ensure that the end surfaces were flat and that the 
edges were sharp. The rods were treated with a dilute 
solution of vinyltriethoxy silane in water, using acetic 
acid as a catalyst, to obtain good bonding later to the 
elastomeric matrix [10]. 

After dipping in the treatment solution, the rods 
were heated for 30 min at 110°C to promote reaction 
of  the silane with the glass surface. They were then 
placed in the centre of  a rectangular strip of 
natural rubber (SMR-5, Rubber Research Institute 
of Malaysia) containing 2% by weight of dicumyl 
peroxide. The composite specimen was placed in a 
heated press for 60rain at 150°C so that decom- 
position of  the peroxide took place and the rubber 
became cross-linked, changing from a soft plastic 
material into a highly elastic solid. Simultaneously, a 
strong bond was formed with the glass inclusion. 

The value of Young's modulus for the cross-linked 
rubber was found to be 1.5 MPa, much lower than 
that of  glass, about 10 GPa. Thus, the rod-like inclu- 
sions can be treated as rigid in comparison with the 
rubber. 

2.2. Measurement of critical stress 
A sketch of a test specimen is shown in Fig. 1. The 
thickness, T, of  the rubber block was generally chosen 
to be at least three times the diameter, d, of the 
centrally located rod and the width, W, was made 
generally about twice as large as T. Thus, the rod was 

effectively located within a thick rubber block. Never- 
theless, the rubber was sufficiently transparent to 
permit visual inspection of  the region around the rod 
ends with a low-power microscope. 

This region was continuously monitored while the 
rubber was being stretched at a strain rate of about 
4 × 10 - 4  s e c  -1  (measured on that portion of the 
sample that did not contain the inclusion). Some 
typical observations are described in the following 
section. A measurement of the tensile strain, e, in the 
part of  the sample away from the inclusion was made 
at the moment when the first void suddenly appeared 
at the rod end. This measurement was made by means 
of an ink grid applied to the rubber surface in the 
unstrained state. The critical strain level was then 
converted into a corresponding critical value of  the 
applied stress, t, from the previously determined 
relation between tensile stress and extension for the 
rubber. 

3. Experimental results and discussion 
3.1. Qualitative observations 
The development of internal fractures is shown in 
Fig. 2 for a specimen containing a short glass rod, 
Lid = 1. When the far-field tensile strain reached a 
critical value of about 100% a small cavity appeared 
close to one flat end of  the rod and close to the rod 
edge. Then at a somewhat higher strain level a second 
cavity appeared near the centre of the flat surface of  
the rod and another cavity appeared at the other end 
of the rod, again near the edge. On stretching further, 
other cavities appeared and linked up, at least partially, 
to form large pointed voids at both ends of the rod 
(Fig. 2). 

Quite similar processes were observed with a long 
glass rod, L/d = 5 (Fig. 3), although the critical value 
of the far-field tensile strain was somewhat smaller in 
this case, about 60%. It is again noteworthy that the 
first cavities appeared toward the edges of  the flat end 
surfaces, followed by cavities in the central region at 
somewhat higher strain levels. 

3.2. Proposed mechanism of failure 
A proposed sequence of  failure events corresponding 
to the observed development of voids is shown in 
Fig. 4. At first, a hypothetical precursor void, too 

Strain 

S t r a i n = O %  1 0 2 %  126 % 
Figure 2 Development of cavitation near a short rod inclusion, L/d = 0.75. 
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Strain 

Strain=O % 63 % 68 % 72 % 80 % 126 % 
Figure 3 Development of cavitation near a long rod inclusion, Lid = 5. 

small to see, expands under the large triaxial tension, 
- P ,  acting near the flat surface of the rod (Fig. 4a). 
When the degree of expansion exceeds the maximum 
extensibility of the rubber, the void wall will split 
apart and the cavity will grow further by tearing 
(Figs 4b, c) to reach a visible size. At somewhat higher 
stresses, other voids, situated in less favourable loca- 
tions or of smaller size, will also be induced to grow 
into large, visible cavities (Fig. 4d). However, they are 
still at this stage entirely surrounded by rubber. 
Although they are formed close to the surface of the 
inclusion, where the dilatant stress is largest, they do 
not make contact with the rigid surface. They can 
be distinguished from voids formed by detachment 
from weakly bonded inclusions by the characteristic 
"convex lens" shape of the regions between the void 
and the surface of the inclusion. Indeed, it is 
sometimes possible to see the thin layer of rubber 
remaining between the void and the inclusion. How- 
ever, at still larger stresses the shape of that part of the 
void in close proximity to the inclusion surface under- 
goes a marked change (Fig. 4e), which is attributed to 

detachment from the inclusion and rupture of the 
layer of rubber separating the void from it. Finally, 
the cavities link up by further detachment and tearing 
apart of the layers of rubber separating them (Fig. 40. 
These several stages can be recognised in Figs 2 and 3. 

It is noteworthy that the voids do not lead directly 
to fracture of the specimen. Because they are oriented 
in the direction of the applied stress they can grow to 
a substantial size without becoming unstable. 

3.3. Cavitation stresses 
We now turn to the critical conditions for formation 
of the first visible voids. Values of the applied stress, 
to, at which the first void appeared near the rod end 
are plotted in Fig. 5 against the length, L, of the rod 
for two different widths, W, of the rubber block. The 
rod.diameter, d, was relatively small in comparison 
with the width or thickness of the rubber block so that 
when the rod length, L, was also small it became a 
small thin disc located in the centre of a large rubber 
block with its axis parallel to the direction of the 
applied tension. Under these circumstances the critical 
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Figure 4 Sketch of proposed development of internal failures from 
hypothetical precursor voids. (a) Elastic expansion of a precursor 
void, (b, c) growth by tearing to a visible size, (d) multiple cavities, 
(e) detachment from the substrate, (f) joining up by detachment or 
tearing. 
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Figure 5 Effect of length, L, of rod on the critical applied stress for 
cavitation for two different widths, W, of rubber block. Block 
thickness, T, 4.8mm. Rod diameter, d, 2.2mm. 
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applied stress for cavitation was found to be about  
1.75 MPa, and independent of  the width or thickness 
of  the rubber block. 

When the rod was longer, however, the critical 
stress was appreciably lower and it now depended 
upon the width and thickness of  the rubber block 
(Fig. 5). When the block had a large cross-section, the 
critical stress for void formation at the end of a long 
rod was small, and vice versa. 

The two extreme cases (a short rod or a small disc 
in the centre of  a thick rubber block, and a long rod 
embedded in a block of  varied width and thickness) 
are now considered separately. 

3.4. Shor t  rod or disc inc lus ions  
Values of  the critical applied stress were determined 
for short-rod inclusions (L/d ~- 1) and for small glass 
cubes arranged so that two of  the faces were normal to 
the far-field tensile stress. The results were virtually 
identical and independent of  the length or diameter 
over the range investigated, 0.6 to 2.2 mm, as shown in 
Fig. 6. The mean value of the true far-field cavitation 
stress, tc (given by (1 + e)ac where a~ is the engineer- 
ing critical stress, i.e. the applied force per unit of  
undeformed cross-sectional area), was 1.42 MPa. 

From finite-element calculations, described in the 
Appendix, the dilatant stress, - P, acting in the surface 
plane of a thin rigid disc, located at the centre of  a 
thick block of an incompressible linearly elastic 
material was found to be substantially uniform over 
the surface of the disc, out to a radius r = 0.85(d/2) 
and approximately equal to the applied far-field tensile 
stress (Fig. 7). Thus, the criterion for formation of the 
first cavity appears to be that the local dilatant stress, 
1.42 MPa in the present case, reaches a value of the 
same order as Young's  modulus, E, for the elastomer; 
1.5 MPa  for the natural rubber compound employed 
here. This is in good agreement with the critical con- 
dition for the unbounded elastic expansion of a small 
spherical cavity in a block of  highly elastic solid [7]. 

It  is interesting to compare cavitation near the flat 
surface of a disc or cube with the corresponding 
process near a rigid spherical inclusion. Results for 
spherical inclusions of  various diameters, taken from 
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Figure 6 Critical stresses for cavitation near (o) a short rod or (D) 
cube inclusion and (O) near a spherical inclusion [9] plotted against 
diameter or width, d, of inclusion. 
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Figure 7 Computed distribution of dilatant stress - P  near the 
surface of a thin rigid disc with its axis in the direction of the applied 
far-field tensile stress, a. 

an earlier investigation [9], are shown in Fig. 6 for 
comparison. The critical stresses for spherical inclu- 
sions depended strongly upon the size of  the inclusion. 
They were only in good accord with the theoretical 
prediction - P - E, corresponding to o- c - El2 for a 
spherical inclusion, when the diameter, d, was relatively 
large, several m m  or greater. For  smaller diameters, 
about 1 mm or so, the critical stress was about  twice as 
large as predicted and it increased sharply as the diam- 
eter of  the inclusion was reduced further (Fig. 6). 

This anomalous behaviour might reflect the rela- 
tively small volume of material at the poles of  a spheri- 
cal inclusion that is subjected to a large dilatant stress, 
in comparison to that near the flat surface of a disc of  
similar diameter. I f  precursor voids of  sufficient size to 
become elastically unstable when - P -~ E are distri- 
buted sparsely, so that there are few or none in a 
volume of less than, say, 10 - ~  m 3, then higher stresses 
would be needed to induce cavitation when the volume 
under a dilatant stress is as small as this. For  a spheri- 
cal inclusion having a diameter of  1 mm, the volume 
under a large dilatant stress is only of  this order of  
magnitude. For  a disc of  the same diameter, the corre- 
sponding volume of rubber under a high dilatant 
stress is about  10-~°m 3, several orders of  magnitude 
larger, and precursor voids of  sufficient size may then 
be plentiful. 

Experiments with discs of  much smaller diameter 
would be helpful to examine whether the critical stress 
for cavitation is then larger than predicted, in the same 
way that it is for spherical inclusions of  about  1 mm 
diameter. 

3.5. Long rod inc lus ions  
The experimental method used for studying cavitation 
near the flat end surface of a rod of semi-infinite length 
is shown in Fig. 8. Wide ranges of  width and thickness 
of  the rubber block were employed. At one extreme, 
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Figure 8 Sketch of  experimental arrangement  for a rod of semi- 
infinite length. 

the block had the same cross-section as the glass rod 
and was joined to it end-to-end as a butt joint. In this 
case, W = d. The other extreme case employed a 
rubber block having a width and thickness of  about 
10d. Two different diameters of glass rod were used, 
about 0.6 and about 2.2 mm. 

Measured values of the applied stress at which a 
cavity first appeared are plotted in Fig. 9 against the 
ratio d/W of the rod diameter to the width and thick- 
ness of the square-sided block. Results are given for 
cavities which first appeared near the edge of  the rod 
end surface, open points, and for cavities appearing 
near the centre, filled-in points. Cavities at the edge 
generally formed first, at somewhat lower stresses. 

The critical stresses were found to be independent of  
the diameter, d, of the rod, over the limited range 
studied, but they depended strongly upon the ratio 
d/W. For the butt-joined test-piece, when d/W = 1, 
the true applied stress was about 5 MPa and the engin- 
eering applied stress was about 1.5MPa for cavi- 
tation. At the other extreme, cavities formed at an 
applied stress of only about 0.3 MPa when the rod 

diameter was much smaller than the width and thick- 
ness of the rubber block (Fig. 9). 

Before discussing theoretical estimates of  the cavita- 
tion stress, represented by the broken curves in Fig. 9, 
it should be explained why, in this figure, the results 
are given in terms of engineering stress instead of true 
stress. When the inclusion is small in comparison to 
the block in which it is embedded, the appropriate 
measure of  far-field fracture stress is probably the true 
stress, as has been employed hitherto. In the present 
case, however, the long rod inclusion prevents the 
rubber  surrounding it from undergoing a significant 
amount of extension and thus, almost up to the rod 
end, the rubber block retains its original cross-section. 
In the rest of the rubber block, on the other hand, the 
rubber stretches considerably and its cross-sectional 
area decreases correspondingly. Because Poissonian 
contraction is inhibited at the rod end to a marked 
degree, the relevant "far-field" stress seems to be that 
calculated on the basis of the original cross-sectional 
area, i.e. the engineering stress, o ,̀ rather than the true 
stress, t, acting in that portion of the specimen that 
undergoes an unrestricted contraction in the cross- 
sectional area. 

Using the finite-element method described in the 
Appendix, values of  dilatant stress, - P  were com- 
puted as a function of  radial distance, r, for a plane in 
a cylindrical elastic block lying close to the flat end of 
a long embedded rigid rod. Again, the block was 
assumed to be incompressible and linearly elastic. 
Results are shown in Fig. 10 for a block having a 
diameter, D, twice as large as that of  the embedded 
rod, for planes at various distances, z, away from the 
flat end of the rod. When z is large, the dilatant stress 
is relatively uniform and given by o`/3 where o  ̀is the 
applied far-field stress. When z is small, the dilatant 
stress is considerably larger and rises from a value of 
about 1.4o` at the centre of the rod end surface to a 
value of about 2o- near the edge. Because of possible 
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Figure 9 Critical stresses, ao, for cavitation near the flat end of  a rod 
of  semi-infinite length plotted against the ratio d/W of rod diameter, 
d, to width, W, of  the rubber block in which it is embedded. (n ,  B) 
rod diameter d = 0 .6mm; (o,  o )  d = 2 .2mm. Crosses and broken 
curves, results obtained from FEM calculations, (Figs 10 and 11) 
assuming that - Pc = 0.75E. 
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Figure 10 Calculated distributions of  dilatant stress, - P ,  near the 
fiat end of  a long rigid rod of  diameter, d, embedded in an elastic 
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Figure I1 Calcu la ted  values  of  d i l a tan t  stress, - P near  the flat end 

of  an  embedded  rod  p lo t ted  aga ins t  the ra t io  of  the rod  diameter ,  

d, to the d iameter ,  D, o f  the rubbe r  b lock  in which  it  is embedded.  

The far-field tensile stress is deno ted  by cr. U p p e r  curve, - P calcu- 
la ted  at  r = 0.85(d/2); lower  curve,  - P ca lcu la ted  at  r = 0. 

inaccuracy arising at the rod edge from stress singu- 
larities and the relatively coarse mesh used in these 
computations, with only 10 elements used for the rod 
radius, d/2, the dilatant stress in the vicinity of 
the rod edge has been taken at the radial distance, 
r = 0.85(d/2), rather than at the singular edge point, 
r = d/2. These results, together with those obtained at 
the centre of  the rod end surface, r = 0, are plotted in 
Fig. 11 against the ratio of the rod diameter, d, to 
the diameter, D, of the elastic block in which it is 
embedded. 

When the rod diameter is equal to that of the block, 
corresponding to a butt joint between a rigid rod and 
an elastic one, the results show that the dilatant stress 
set up at the interface is approximately the same as the 
applied far-field tensile stress, except very near the 
edge where stress singularities dominate. When the 
rod is much smaller than the block in which it is 
embedded, the dilatant stress at the rod end is much 
larger than the far-field tensile stress and even larger 
towards the edge of  the rod end surface. 

These results can be employed to calculate theoreti- 
cal values for the applied stress at which cavitation 
takes place, on the assumption that the critical 
condition for cavitation is that the dilatant stress 
approaches the magnitude of Young's modulus 
- P -~ E. The broken curves in Fig. 9 were obtained 
in this way from the relations given in Fig. 11. They 
describe the experimentally measured conditions for 
cavity formation with considerable success, over the 
whole range of block dimensions. We conclude that 
dilatant stresses near the rod ends are, indeed, 
responsible for the observed failures, which take place 
when and where the dilatant stress approaches E in 
magnitude. 

4. Conclusions 
l. A characteristic internal fracture process, termed 

cavitation, is observed in a stretched elastomeric block 
containing a rigid disc or rod. 
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2. The critical applied stress at which cavities form 
is affected by the width and thickness of the rubber 
block and by the length of the rod. For  a short rod, i.e. 
a disc, it is independent of  the rod diameter and of  the 
size of  the rubber block in which it is embedded, and 
is approximately equal to Young's modulus, E, of the 
elastomer. For  long rods, it is inversely proportional 
to the width and thickness of the rubber block and 
becomes quite small, less than E/5  when the width and 
thickness are ten times the rod diameter. 

3. The first cavities form near the edges of  the flat 
end surfaces of the rod. At higher stresses cavities also 
appear in the centre, but still close to the interface. 

4. Stress distributions near the rod surface have 
been calculated by finite element methods, assuming 
perfect bonding of  an incompressible, linearly elastic 
material. 

5. The observed cavitation stresses are in satisfac- 
tory agreement in all cases with a simple fracture 
criterion: that voids form where, and when, the local 
dilatant stress - P = E. This is the same criterion that 
governs the unstable elastic expansion of a spherical 
void in a highly elastic solid and suggests that invisibly 
small precursor voids are plentiful in elastomeric 
solids. 

Appendix. Finite element analysis 
Stress distributions within the rubber block were 
analysed using a finite element method. The rubber 
block was treated as a long cylinder containing a long 
rigid rod or a thin rigid disc. The rod extended from 
one end of the rubber cylinder to its middle section. 
The length of rod was chosen to be thirty times its 
radius and the radius of the rubber cylinder was 
chosen to be one, two, or ten times the radius of the 
rod. In the case of  the embedded disc, the radius of  the 
rubber cylinder was taken to be ten times the radius of 
the disc, which was given a thickness (length) of  zero. 
A uniform tensile stress was assumed to be applied at 
both ends of the rubber cylinder, of magnitude El  100, 
where E is Young's modulus of  the rubber. The rubber 
was assumed to be linearly elastic and incompressible, 
with Poisson's ratio equal to 0.5. The rod and disc 
were assumed to be perfectly rigid. 

The finite element model was analysed using the 
MARC program [11]. The incompressible restraint 
was enforced by the Herrmann variational principle 
[12] which treats the hydrostatic pressure as an 
independent variable. 

The rubber matrix in the vicinity of the end of  the 
rigid rod was mainly considered in the analysis, because 
fracture occurs in this region. Large stress gradients 
were expected; therefore, eight-noded quadrilateral 
axisymmetric elements with nine Gaussian integration 
points were used. There were ten equally spaced 
elements in the radius direction, along the interface, 
with an element height of 0.01d where d is the rod 
diameter. The element height was increased gradually 
for element layers lying further away from the interface. 

Perfect bonding was assumed to exist between the 
rigid rod and the matrix. Hence, the boundary con- 
ditions at the interface were set up to disallow relative 
displacements between adjacent faces of  the rigid 



rod and the matrix. The computer program calcu- 
lated stresses in the axial, radial and hoop directions; 
azz, ffrr, (TO0" The dilatant stress, - P  = (azz + art + 
aoo)/3, was evaluated at the centre of each element. 
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